Structural Modeling of Full-Length KCa Channels using Rosetta
نویسندگان
چکیده
منابع مشابه
Modeling Disordered Regions in Proteins Using Rosetta
Protein structure prediction methods such as Rosetta search for the lowest energy conformation of the polypeptide chain. However, the experimentally observed native state is at a minimum of the free energy, rather than the energy. The neglect of the missing configurational entropy contribution to the free energy can be partially justified by the assumption that the entropies of alternative fold...
متن کاملMacromolecular modeling with rosetta.
Advances over the past few years have begun to enable prediction and design of macromolecular structures at near-atomic accuracy. Progress has stemmed from the development of reasonably accurate and efficiently computed all-atom potential functions as well as effective conformational sampling strategies appropriate for searching a highly rugged energy landscape, both driven by feedback from str...
متن کاملStructural photoactivation of a full-length bacterial phytochrome
Phytochromes are light sensor proteins found in plants, bacteria, and fungi. They function by converting a photon absorption event into a conformational signal that propagates from the chromophore through the entire protein. However, the structure of the photoactivated state and the conformational changes that lead to it are not known. We report time-resolved x-ray scattering of the full-length...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Voltage sensor conformations in the open and closed states in ROSETTA structural models of K(+) channels.
Voltage-gated ion channels control generation and propagation of action potentials in excitable cells. Significant progress has been made in understanding structure and function of the voltage-gated ion channels, highlighted by the high-resolution open-state structure of the voltage-gated potassium channel, K(v)1.2. However, because the structure of the closed state is unknown, the gating mecha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2018
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2017.11.1743